Transformer models have achieved great success across many NLP problems. However, previous studies in automated ICD coding concluded that these models fail to outperform some of the earlier solutions such as CNN-based models. In this paper we challenge this conclusion. We present a simple and scalable method to process long text with the existing transformer models such as BERT. We show that this method significantly improves the previous results reported for transformer models in ICD coding, and is able to outperform one of the prominent CNN-based methods.
translated by 谷歌翻译
在本文中,我们使用语言数据收集的现场方法讨论了四种低资源印度语语言的演讲语料库的过程中的工作 - Awadhi,Bhojpuri,Braj和Magahi。目前,语料库的总大小约为18小时(每种语言约4-5小时),并用语法信息进行转录和注释,例如词性标签,形态学特征和普遍的依赖关系。我们讨论了以这些语言收集数据的方法,其中大多数是在Covid-19大流行中心进行的,其中之一是为低收入群体带来一些额外的收入,说这些语言。在本文中,我们还讨论了这些语言中自动语音识别系统的基线实验的结果。
translated by 谷歌翻译
Our paper aims to analyze political polarization in US political system using Language Models, and thereby help candidates make an informed decision. The availability of this information will help voters understand their candidates views on the economy, healthcare, education and other social issues. Our main contributions are a dataset extracted from Wikipedia that spans the past 120 years and a Language model based method that helps analyze how polarized a candidate is. Our data is divided into 2 parts, background information and political information about a candidate, since our hypothesis is that the political views of a candidate should be based on reason and be independent of factors such as birthplace, alma mater, etc. We further split this data into 4 phases chronologically, to help understand if and how the polarization amongst candidates changes. This data has been cleaned to remove biases. To understand the polarization we begin by showing results from some classical language models in Word2Vec and Doc2Vec. And then use more powerful techniques like the Longformer, a transformer based encoder, to assimilate more information and find the nearest neighbors of each candidate based on their political view and their background.
translated by 谷歌翻译
and widely used information measurement metric, particularly popularized for SSVEP- based Brain-Computer (BCI) interfaces. By combining speed and accuracy into a single-valued parameter, this metric aids in the evaluation and comparison of various target identification algorithms across different BCI communities. To accurately depict performance and inspire an end-to-end design for futuristic BCI designs, a more thorough examination and definition of ITR is therefore required. We model the symbiotic communication medium, hosted by the retinogeniculate visual pathway, as a discrete memoryless channel and use the modified capacity expressions to redefine the ITR. We use graph theory to characterize the relationship between the asymmetry of the transition statistics and the ITR gain with the new definition, leading to potential bounds on data rate performance. On two well-known SSVEP datasets, we compared two cutting-edge target identification methods. Results indicate that the induced DM channel asymmetry has a greater impact on the actual perceived ITR than the change in input distribution. Moreover, it is demonstrated that the ITR gain under the new definition is inversely correlated with the asymmetry in the channel transition statistics. Individual input customizations are further shown to yield perceived ITR performance improvements. An algorithm is proposed to find the capacity of binary classification and further discussions are given to extend such results to ensemble techniques.We anticipate that the results of our study will contribute to the characterization of the highly dynamic BCI channel capacities, performance thresholds, and improved BCI stimulus designs for a tighter symbiosis between the human brain and computer systems while enhancing the efficiency of the underlying communication resources.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
As language models have grown in parameters and layers, it has become much harder to train and infer with them on single GPUs. This is severely restricting the availability of large language models such as GPT-3, BERT-Large, and many others. A common technique to solve this problem is pruning the network architecture by removing transformer heads, fully-connected weights, and other modules. The main challenge is to discern the important parameters from the less important ones. Our goal is to find strong metrics for identifying such parameters. We thus propose two strategies: Cam-Cut based on the GradCAM interpretations, and Smooth-Cut based on the SmoothGrad, for calculating the importance scores. Through this work, we show that our scoring functions are able to assign more relevant task-based scores to the network parameters, and thus both our pruning approaches significantly outperform the standard weight and gradient-based strategies, especially at higher compression ratios in BERT-based models. We also analyze our pruning masks and find them to be significantly different from the ones obtained using standard metrics.
translated by 谷歌翻译
The rapid growth of machine translation (MT) systems has necessitated comprehensive studies to meta-evaluate evaluation metrics being used, which enables a better selection of metrics that best reflect MT quality. Unfortunately, most of the research focuses on high-resource languages, mainly English, the observations for which may not always apply to other languages. Indian languages, having over a billion speakers, are linguistically different from English, and to date, there has not been a systematic study of evaluating MT systems from English into Indian languages. In this paper, we fill this gap by creating an MQM dataset consisting of 7000 fine-grained annotations, spanning 5 Indian languages and 7 MT systems, and use it to establish correlations between annotator scores and scores obtained using existing automatic metrics. Our results show that pre-trained metrics, such as COMET, have the highest correlations with annotator scores. Additionally, we find that the metrics do not adequately capture fluency-based errors in Indian languages, and there is a need to develop metrics focused on Indian languages. We hope that our dataset and analysis will help promote further research in this area.
translated by 谷歌翻译